
Easing the Transition to IPv6

Miguel Ángel Díaz, Jordi Palet
CONSULINTEL, San José Artesano 1, Alcobendas, 28108, Madrid, SPAIN

{miguelangel.diaz, jordi.palet}@consulintel.es

Abstract

This paper presents the "auto-transition" concept

which tries to ensure that any network device can
obtain IPv6 connectivity at any time and whatever
network is attached to, even if such network is
connected to Internet only with IPv4. The algorithm
looks for the best possible transition mechanism
according to performance criteria as well as the
scenario where the device is located. By implementing
such auto-transition algorithm in either or both end-
nodes or middle-boxes (CPEs), users could always
obtain IPv6 connectivity with no human intervention.
The document do not actually provides a complete
solution, just an evaluation of the problem and the
requirements towards a future documented solution.

1. Introduction

Lots of devices and applications around us will
benefit obtaining IPv6 connectivity everywhere: home
automation, wearable devices, cars, PDAs, mobile
phones, peer-to-peer applications, remote control
applications, etc. IPv6 is suitable to solve the network
requirements that those devices/applications will need:
addressing space, end-to-end secure peer-to-peer
communication, auto-configuration features and so on.
The main goal of the “auto-transition” concept is to
facilitate the IPv6 deployment in a seamless way for
such devices and applications because native IPv6
connectivity is not always possible and users need to
use an IPv6 transition mechanism in a seamless way.

The “auto-transition” concept addresses the need to
fill a gap in transition mechanisms: while IPv6
provides auto-configuration features, enabling devices
to work according to the plug-and-play philosophy,
(i.e. with no manual intervention), they only can be
applied once the device has obtained IPv6
connectivity. As consequence if native IPv6
connectivity is not available, users need to have
technical knowledge to choose and to configure

manually the adequate transition mechanism that fits in
the network scenario where the user is. This can
become an unacceptable brake to the IPv6 deployment,
mainly in home and SOHO environments where users
usually do not have any networking knowledge.

The auto-transition algorithm deals with all the
tasks required to configure automatically the best IPv6
connectivity at anytime, in any network scenario,
which include native IPv6 connectivity detection and if
this is not available, transition mechanism selection. It
can be implemented either in stand-alone devices
(host, PDA, etc.) or middle boxes like CPE routers of
any kind.

2. Auto-Transition overview

When the device is attached to the network the
auto-transition algorithm must check if native IPv6
connectivity is available by means of Router
Advertisements (RA) [1] or DHCPv6 [2]. Otherwise,
the algorithm should try to obtain IPv6 connectivity by
using the best transition mechanism according to the
specific network configuration where the device is
attached, which we call scenario.

Whether the conditions of the network change or
the user/device changes the network attachment
location while moving, the auto-transition algorithm
has to monitor periodically the network parameters
(i.e. IPv4 address, loss, delays, etc.) in order to detect
those changes and to decide if another transition
mechanism different to the one currently being used is
more convenient, for instance in case is providing
better performance on the new environment.

Users could introduce some parameters by means of
a wizard during the installation of the application that
implements the auto-transition algorithm, but the
default configuration should be enough for the
majority of the users. Once this wizard is up and
running, all the tasks should be made automatically by
the system and no manual intervention is required. Of
course, an experienced user could still make certain

improvements to the default wizard configuration, in
specific situations or scenarios.

This approach should be available at least in two
kind of platforms: End-devices which do not intend to
provide IPv6 connectivity to others (hosts, PDAs,
mobile phones, home automation devices, white goods,
consumer electronics, etc.) and CPE devices which are
located between two different networks to provide
native IPv6 connectivity by means of RA [1] or
DHCPv6 [2] (typically routers, IPv4 NAT boxes, etc).

2.1. Selection of the proper transition
mechanism

The best IPv6 connectivity, in principle, is
obviously the native one, if available, since it should
not add extra delays in the communication neither
introduce more complexity to the networks, as for
example, the packets will not be tunneled or
encapsulated through other protocols. Consequently
the auto-transition algorithm first must check if IPv6
native connectivity is available. On the contrary the
auto-transition algorithm must choose the right
transition mechanism to be used to ensure the IPv6
connectivity.

 Detect Scenario

native_IPv6_available
AND

native_priority

use_native_IPv6_connectivity

first_check
OR

perform_check_allowed

check_performance

use_best_mechanism

configure_connectivity

wait (link_check_timeout)

yes

yes

no

no

Figure 1. Auto-Transition Algorithm

A few scenarios with particular network

requirements had been defined already ([4], [5], [6]),
but not all the transition mechanisms fit in such
network scenarios, as being evaluated at [7], which is
trying to make the best fit to each scenario. The auto-
transition algorithm should take into account the
results shown in [7] to select a list of candidate
mechanism to be checked on the scenario where the
user is located. Finally, given the fact that the end user
always demands the best performance on the IPv6
connectivity, it should be the main criteria to choose
the right transition mechanism from the candidate list.

In order to make the mechanism as simple as
possible only delay and packet loss should be actually

considered for knowing the link performance that each
evaluated transition mechanism presents. According to
this philosophy the auto-transition algorithm could
operate by means of the simple algorithm shown in
Figure 1. The meaning of each task or parameter is as
follows:

detect_scenario: Task to deal with detecting the
scenario where the device willing to have IPv6
connectivity is attached. It checks if native IPv6 is
available, if a public IPv4 address is available, if a
NAT is being used and what type, if there is a proxy or
firewall, or if other protocols can be operated.

native_IPv6_available: Indicates if native IPv6 is
available.

native_priority: Indicates that IPv6 connectivity
has no higher priority if other transition mechanism
offers better performance.

use_native_IPv6_connectivity: Task to configure
the interface to use native IPv6 connectivity, using
stateless or stateful auto-configuration, upon their
availability.

first_check: Defines if this is the first time this
check is being done after an interface reset.

performance_check_allowed: Indicates if the
performance of the selected mechanism must be
measured after selected, for instance, to avoid traffic
being generated in non-flat rate links (3GPP, ISDN,
etc.).

check_performance: This task checks the
performance that each transition mechanism presents,
including native IPv6 if available, by measuring delays
and losses.

use_best_mechanism: According to the
measurement results, the best mechanism is selected.

configure_connectivity: Either native IPv6
connectivity or the best available transition mechanism
is configured.

link_check_timeout: Once the IPv6 connectivity is
obtained, the auto-transition algorithm periodically
monitors the link status. The delay between
consecutive checks is defined by this parameter.

A possible list of mechanisms to be checked, sorted
by preference could be: Native IPv6 Connectivity, 6in4
with proto-41[3], ISATAP, 6to4, TSP, AYIYA and
TEREDO.

2.2. Change of transition mechanism

Change of transition mechanism refers to the task to
abandon the transition mechanism that is actually
being used and start to use another one that presents
better performance. This is not an easy task at all, since
it involves at least two important issues:

1) To maintain the current IPv6 address. This is
very important in some circumstances, since otherwise
applications with communications opened will not
work. Especially important is the case when the auto-
transition algorithm is implemented in border devices
that provide native IPv6 connectivity to the whole
network by mean of RA [1] or DHCPv6 [2], because
they should try to keep always the IPv6 addressing
space. To do that it is still necessary to define a method
that solves this issue. MIPv6 concepts/solutions could
be applied and possibly also those related to
multihoming.

2) User authentication without human intervention.
The philosophy of the auto-transition algorithm is that
all the processes are done automatically, with no
human intervention. As some of the transition
mechanisms may require user authentication, the auto-
transition algorithm needs to store the authentication
parameters (maybe configured through the wizard
during the installation process), so they are
automatically used when changing to a different
Tunnel End Point (TEP). Also AAA mechanisms
could be used.

2.3. New transition mechanisms

A number of devices do not allow tunnel-based
transition mechanisms to work properly. Examples of
those devices are NAT boxes, proxies or firewalls.
Even building IPv6 tunnels over UDP is not always
possible since some middle boxes might filter those
packets. When this happens it is required that the auto-
transition algorithm make usage of a method that
cannot be filtered by the middle box.

The following solutions are being considered: Layer
2 VPNs (L2TP, PPTP, PPPoE), Layer 3 VPNs or
Layer 4 tunnels (TLS/SSH, HTTP, SSH). The last type
of tunnels (layer 4) is the only one that can always
ensure the traversal of any middle-box, but it also
offers the lower performance, so it should be chosen
only as the very last resort.

2.4. Discovery of the IPv6 End Point

Devices running the auto-transition algorithm need
to know where to find the IPv6 Tunnel End Point
(TEP), which provides the IPv6 connectivity, just in
case native IPv6 connectivity is not available. Having
in mind that users want plug-and-play devices/services
and that most of them do not have any knowledge
about how the transition mechanisms works or where
the nearest TEP is located, it is required to consider the
auto-discovery of the IPv6 TEP (which could also

include the tunnel setup handshake), so devices can
find it automatically.

To achieve these goals, a solution is proposed [8]
which does not imply any new protocol but making
usage of the current DNS along with standardized
anycast (shared unicast) addresses for each transition
mechanism. The ideal situation is to implement on the
ISP side all the following requirements in order to get
the auto-discovery mechanism more functional.
However, it is not mandatory and at least only one of
them should be selected:

(1) DNS server with SRV RR support [9]. The
service name for the auto-discovery purpose should be
standardized for each transition mechanism in the
following form:

_transition-mechanism_srv._protocol.ispname.com

One important advantage of this method is that load

balancing can be done easily and efficiently by means
of priority and weight parameters defined in SRV RR.
More details can be found in [9].

(2) A/CNAME RR for Unicast. A standardized
A/CNAME RR for each supported transition
mechanisms within the domain of the ISP. According
to the same nomenclature, the DNS entries would
follow the form:

transition-mechanism_srv.ispname.com

(3) Anycast (Shared Unicast) Addresses. Each

transition mechanism would have an assigned anycast
(shared unicast) address, such as in the case of the 6to4
transition mechanism [10]. The anycast prefix/address
for each transition mechanism would be specified by
IANA.

When looking for a specific TEP within the ISP the
user belongs to, the user always query firstly for a
DNS SRV RR to its ISP DNS server, so the ISP
domain name is learned in some way (there is several
ways to do that) and the DNS SRV RR query for the
specific TEP is created in the form explained above. If
the DNS server matches the query, it returns the proper
reply with all the possible targets defined for that
query and the client choose one of them according to
the priority and weight parameters of each target.

If no DNS SRV RR reply is obtained, then an
A/CNAME query is built by the client by appending
the standardized transition service name to the ISP
domain name, as explained above.

Finally if there is not a valid A/CNAME RR
matching the client query, then the client will directly
use the standardized anycast address. This allows the
provision by third parties of the service for free, when

the own ISP does not provide it and it does not require
any special deployment in the ISP infrastructure. In
this point the auto-discovery function ends.

3. Network Managed Transition

The algorithm described in this paper follows an
approach based on the role that the user’s device plays.
However the algorithm could be improved and/or even
more easily managed if the ISP helps in some way to
the auto-transition mechanism. Following this new
approach, Policy Based Networks (PBN) [11] can
offer a candidate solution to provide facilities to the
auto-transition algorithm. Policies stored on the
network repository might include information about
the type of transition mechanisms implemented into
the ISP where the user device is attached to, so the
auto-transition algorithm implemented into the user’s
device would choose one of the mechanisms
suggested/enabled by the ISP policies.

With this approach the user’s device will act as a
Policy Enforcement Point (PEP) [11] as well as
implementing the auto-transition algorithm and it
would inform the Policy Decision Point (PDP) [11]
located at the ISP side about features such as type of
connection, date/time, user privileges and/or whatever
other relevant information. Then, the PDP might
interact with other policies stored on the repository
such as QoS Policies, Security Policies and so on, in
order to propose the more adequate transition
mechanism to be used by the device willing to get IPv6
connectivity.

Considering that most of the ISPs will not
necessarily deploy transition mechanisms in the early
stage, advanced IPv6 Internet Exchanges (IX) could
provide this kind of services [12] and in general
policy-based capabilities. The IX is not just a central
peering point, which facilitates any new service
deployment, but also a place where lots of useful
information (routes, QoS, link conditions, etc.) about
several domains is available. With this philosophy, the
transition policies will be one more facility provided
by this type of IXs.

Nevertheless in spite of the network approach,
whether the network provides this type of transition
facilities or not, the auto-transition algorithm, when
present, must always work and it will provide the best
possible IPv6 connectivity.

4. Conclusions

There is a need for a method to provide plug-and-play
features to IPv6 transition mechanisms in the same

way that the IPv6 protocol does in the local network.
With this philosophy users do not have to know any
technical knowledge to choose the more adequate
transition mechanisms, nor to make any setup of it, nor
to find out where the nearest TEP is located. They just
plug their devices and they automatically become IPv6
capable whether they are in a native IPv6 environment
or not, even if they are in a private IPv4 environment
behind a NAT box. Some research to achieve these
goals is being done and some preliminary work is
presented in this paper.

5. Acknowledgements

The authors would like to acknowledge both the
European Commission and Spanish Ministry of
Industry support in the co-funding, respectively, of the
Euro6IX and Auto-Transición projects, where this
work is being developed.

6. References

[1] S. Thomson, and T. Narten, "IPv6 Stateless Address
Autoconfiguration", RFC 2462, December 1998.
[2] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins and
M. Carney, "Dynamic Host Configuration Protocol for IPv6
(DHCPv6)", RFC 3315, July 2003.
[3] J. Palet, C. Olvera and D. Fernández "Forwarding
Protocol 41 in NAT Boxes", draft-palet-v6ops-proto41-nat-
03 (work in progress).
[4] C. Huitema, "Evaluation of Transition Mechanisms for
Unmanaged Networks", RFC 3904, September 2004.
[5] M. Lind, V. Ksinant, S. Park, A. Baudot and P. Savola,
"Scenarios and Analysis for Introducing IPv6 into ISP
Networks", draft-ietf-v6ops-isp-scenarios-analysis-03 (work
in progress).
[6] J. Bound, "IPv6 Enterprise Network Scenarios", draft-
ietf-v6ops-ent-scenarios-05 (work in progress).
[7] P. Savola and J. Soininen, "Evaluation of v6ops
Tunneling Scenarios and Mechanisms", draft-savola-v6ops-
tunneling-01 (work in progress).
[8] J. Palet, and M. A. Diaz “IPv6 Tunnel End-point
Automatic Discovery Mechanism”, draft-palet-v6ops-
solution-tun-auto-disc-01.txt (work in progress).
[9] A. Gulbrandsen, P. Vixie and L. Esibov, "A DNS RR for
specifying the location of services (DNS SRV)", RFC 2782,
February 2000.
[10] C. Huitema "An Anycast Prefix for 6to4 Relay
Routers", RFC 3068, June 2001.
[11] R. Yavatkar, D. Pendarakis and R. Guerin, "A
Framework for Policy-based Admission Control", RFC 2753,
January 2000.
[12] M. Morelli, J. Palet, D. Fernández and A. Gómez
"Advanced IPv6 Internet Exchange model", draft-morelli-
v6ops-ipv6-ix-00 (work in progress).

