IPv6 Distributed Security problem statement
<draft-vives-v6ops-ipv6-security-ps-03.txt>

Jordi Palet (jordi.palet@consulintel.es)
Alvaro Vives (alvaro.vives@consulintel.es)
Pekka Savola (psavola@funet.fi)
Motivation

- How would the deployment of IPv6 affect the security of a network?
- IPv6 enabled devices and networks bring some issues to be taken into account by security administrators:
 - End-2-end communications
 - IPsec in all IPv6 stacks
 - Increase in the number and type of IP devices
 - Increased number of “nomadic” devices
- Identify IPv6 Issues that may justify the need of a new security model
Concepts

• **Attack/Threat**: Either passive or active
• **Security (S)**: Protection against attacks+IPsec
• **Policy Management Tool (PMT)**: Used by the network administrator to edit the policies
• **Policy Decision Points (PDP)**: Entity which distribute S policies
• **Security Policy (SP)**: Information used by PDP to provide S
• **Policy Enforcement Points (PEP)**: Apply SP (Clients)
Network-based Security Scheme (I)
Network-based Security Scheme (I)
Network-based Security Scheme (I)

[Diagram showing a network with CLIENTS and SERVERS connected through the INTERNET, with icons representing THREAT, Security Policy 1, Security Policy 2, and PDP.]
Network-based Security Scheme (II)

• Main Assumptions:
 – Threats come form “outside”
 – Protected nodes won’t go “outside”
 – No backdoors (ADSL, WLAN, etc.)

• Main Drawbacks:
 – Centralized model
 – Do not address threats coming from inside
 – FW usually acts as NAT/Proxy
 – Special solutions are needed for Transport Mode Secured Communications
Host-based Security Scheme

- ALERT
- DEFAULT
- TRUST ON SEC. POLICY
- THREAT
- Security Policy 1
- Security Policy 2
- PDP

INTERNET

CLIENTS (PEP)

SERVERS (PEP)
Host-based Security Scheme

INTERNET

CLIENTS (PEP)

SERVERS (PEP)

ALERT
DEFAULT
TRUST ON SEC. POLICY

THREAT Security Policy 1 Security Policy 2 PDP
Host-based Security Scheme

INTERNET

CLIENTS (PEP)

SERVERS (PEP)

ALERT
DEFAULT
TRUST ON SEC. POLICY
THREAT
Security Policy 1
Security Policy 2
PDP
Host-based Security Scheme

- ALERT
- DEFAULT
- TRUST ON SEC. POLICY
- THREAT
- Security Policy 1
- Security Policy 2
- PDP

INTERNET

CLIENTS (PEP)

SERVERS (PEP)
Host-based Security Example

Alert
Default
Trust on Sec. Policy
Threat
Security Policy 1
Security Policy 2
PDP

INTERNET

HOME

HOT-SPOT

SP SERVER

OFFICE

62nd IETF,
Minneapolis
draft-vives-v6ops-ipv6-security-ps-03.txt
Host-based Security Example

Alert
Default
Trust on Sec. Policy
 Threat
Security Policy 1
Security Policy 2
PDP

62nd IETF, Minneapolis
draft-vives-v6ops-ipv6-security-ps-03.txt
Host-based Security Example

INTERNET

SP SERVER

HOT-SPOT

HOME

OFFICE

ALERT
DEFAULT
TRUST ON SEC. POLICY
THREAT
Security Policy 1
Security Policy 2
PDP
Host-based Security Model (I)

- **BASIC IDEA**: Security Policy centrally defined and distributed to PEPs. The network entities will authenticate themselves in order to be trusted.

- **THREE elements**:
 - Policy Specification Language
 - Policy Exchange Protocol
 - Authentication of Entities
Host-based Security Model (IV)

- **Main Assumptions:**
 - Threats come from anywhere in the network
 - Each host can be uniquely and securely identified
 - Security could be applied in one or more of the following layers: network, transport and application

- **Main Drawbacks:**
 - Complexity
 - Uniqueness and secured identification of hosts is not trivial
 - Policy updates have to be accomplished in an efficient manner
 - A compromised host still is a problem
 - Is PDP dependant: more complexity to address this
Host-based Security Model (V)

- **Main Advantages:**
 - Protects against internal attacks
 - Don’t depend on where the host is connected
 - Still maintain the centralized control
 - Enables the end-2-end communication model, both secured or not
 - Better decision could be taken based on host-specific info.
 - Enables a better collection of audit info
IPv6 Issues (I)

1. **end-2-end**
 - Any host must be reachable from anywhere. NAT/Proxy is not desired.

2. **Encrypted Traffic**
 - For example IPsec ESP Transport Mode Traffic

3. **Mobility**
 - Both Mobile IP and the increase of “portable” IP devices will mean they will be in “out-of-control” networks

4. **Neighbor Discovery**
 - RA, RS, NA, NS and Redirect Messages could be used in a malicious way -> SEND
IPv6 Issues (II)

5. Addresses
 - Much more addresses -> hosts with more than one, difficult brute force scans
 - More human error prone
 - Randomly generated addresses
 - Link-local and Multicast Addresses
 - Multihoming

6. Embedded Devices
 - Big amount of devices with almost no resources to perform security tasks -> should be taken into account in a possible solution

7. Routing Header
8. Home Address Option
Open Issues

• **Need Feedback on:**
 – Should transition mechanisms be addressed? (already done in Pekka Savola’s draft)
 – The distributed Security (DS) model is the best to address the future needs?
 – Could IPv6 and DS be separated?

• **Current Discussion about:**
 – Good to go for an IPv6 issues checklist document for the security people?
 – Go for a deeper DS analysis
Thanks!

• Questions?