IPv6 Distributed Security problem statement draft-vives-v6ops-ipv6-security-ps-03.txt

Jordi Palet (jordi.palet@consulintel.es)
Alvaro Vives (alvaro.vives@consulintel.es)
Pekka Savola (psavola@funet.fi)

Motivation

- How would the deployment of IPv6 affect the security of a network?
- IPv6 enabled devices and networks bring some issues to be taken into account by security administrators:
 - End-2-end communications
 - IPsec in all IPv6 stacks
 - Increase in the number and type of IP devices
 - Increased number of "nomadic" devices
- Identify IPv6 Issues that may justify the need of a new security model

Concepts

- Attack/Threat: Either passive or active
- Security (S): Protection against attacks+IPsec
- Policy Management Tool (PMT): Used by the network administrator to edit the policies
- Policy Decision Points (PDP): Entity which distribute S policies
- Security Policy (SP): Information used by PDP to provide S
- Policy Enforcement Points (PEP): Apply SP (Clients)

Network-based Security Scheme (I)

THREAT Security Policy 1 Security Policy 2 PDP

Network-based Security Scheme (I)

THREAT Security Policy 1 Security Policy 2 PDP

Network-based Security Scheme (I)

THREAT Security Policy 1 Security Policy 2 PDP

Network-based Security Scheme (II)

Main Assumptions:

- Threats come form "outside"
- Protected nodes won't go "outside"
- No backdoors (ADSL, WLAN, etc.)

Main Drawbacks:

- Centralized model
- Do not address threats coming from inside
- FW usually acts as NAT/Proxy
- Special solutions are needed for Transport
 Mode Secured Communications

Host-based Security Model (I)

 BASIC IDEA: Security Policy centrally defined and distributed to PEPs. The network entities will authenticate themselves in order to be trusted.

- THREE elements:
 - Policy Specification Language
 - Policy Exchange Protocol
 - Authentication of Entities

Host-based Security Model (IV)

Main Assumptions:

- Threats come from anywhere in the network
- Each host can be uniquely and securely identified
- Security could be applied in one or more of the following layers: network, transport and application

Main Drawbacks:

- Complexity
- Uniqueness and secured identification of hosts is not trivial
- Policy updates have to be accomplished in an efficient manner
- A compromised host still is a problem
- Is PDP dependant: more complexity to address this

Host-based Security Model (V)

Main Advantages:

- Protects against internal attacks
- Don't depend on where the host is connected
- Still maintain the centralized control
- Enables the end-2-end communication model, both secured or not
- Better decision could be taken based on host-specific info.
- Enables a better collection of audit info

IPv6 Issues (I)

1. end-2-end

Any host must be reachable from anywhere.
 NAT/Proxy is not desired.

2. Encrypted Traffic

For example IPsec ESP Transport Mode Traffic

3. Mobility

 Both Mobile IP and the increase of "portable" IP devices will mean they will be in "out-of-control" networks

4. Neighbor Discovery

 RA, RS, NA, NS and Redirect Messages could be used in a malicious way -> SEND

IPv6 Issues (II)

5. Addresses

- Much more addresses -> hosts with more than one, difficult brute force scans
- More human error prone
- Randomly generated addresses
- Link-local and Multicast Addresses
- Multihoming

6. Embedded Devices

- Big amount of devices with almost no resources to perform security tasks -> should be taken into account in a possible solution
- 7. Routing Header
- 8. Home Address Option

Open Issues

Need Feedback on:

- Should transition mechanisms be addressed?
 (already done in Pekka Savola's draft)
- The distributed Security (DS) model is the best to address the future needs?
- Could IPv6 and DS be separated?

Current Discussion about:

- Good to go for an IPv6 issues checklist document for the security people?
- Go for a deeper DS analysis

Thanks!

• Questions?

